Quantum computation, non-demolition measurements, and reflective control in living systems.

نویسنده

  • Abir U Igamberdiev
چکیده

Internal computation underlies robust non-equilibrium living process. The smallest details of living systems are molecular devices that realize non-demolition quantum measurements. These smaller devices form larger devices (macromolecular complexes), up to living body. The quantum device possesses its own potential internal quantum state (IQS), which is maintained for a prolonged time via reflective error-correction. Decoherence-free IQS can exhibit itself by a creative generation of iteration limits in the real world. It resembles the properties of a quasi-particle, which interacts with the surround, applying decoherence commands to it. In this framework, enzymes are molecular automata of the extremal quantum computer, the set of which maintains highly ordered robust coherent state, and genome represents a concatenation of error-correcting codes into a single reflective set. The biological evolution can be viewed as a functional evolution of measurement constraints in which limits of iteration are established, possessing criteria of perfection and having selective values.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Living Systems are Dynamically Stable by Computing Themselves at the Quantum Level

The smallest details of living systems are molecular devices that operate between the classical and quantum levels, i.e. between the potential dimension (microscale) and the actual three-dimensional space (macroscale). They realize non-demolition quantum measurements in which time appears as a mesoscale dimension separating contradictory statements in the course of actualization. These smaller ...

متن کامل

Universal quantum computation on the power of quantum non-demolition measurements

universal quantum computation optical QIP, efficient resources In this letter we investigate the linear and nonlinear models of optical quantum computation and discuss their scalability and efficiency. We show how there are significantly different scaling properties in single photon computation when weak cross-Kerr nonlinearities are allowed to supplement the usual linear optical set. In partic...

متن کامل

A Non-Demolition Photon Counting Method by Four-Level Inverted Y-Type Atom

The semi-classical model of atom-field interaction has been fully studied for some multilevel atoms, e.g. Vee, L, Cascade X , Y, and inverted Y and so on. This issue is developed into the full-quantum electrodynamics formalism, where the probe and coupling electromagnetic fields are quantized. In this article, we investigate the full-quantum model of absorption and dispersion spectrum of trappe...

متن کامل

Explore Electron Spin Parity Measurements in View of Indistinguishability

Recently, Hans-Andreas Engel and Daniel Loss proposed an interesting protocol of electrons spin parity measurement. In addition, they suggested a way of constructing controlled NOT (CNOT) gate and unviersal quantum computer with this measurement. However, a quantum erasing procesing will happen and their construction will become challenging, if the indistinguishability of two electrons in one q...

متن کامل

Quantum demolition filtering and optimal control of unstable systems.

A brief account of the quantum information dynamics and dynamical programming methods for optimal control of quantum unstable systems is given to both open loop and feedback control schemes corresponding respectively to deterministic and stochastic semi-Markov dynamics of stable or unstable systems. For the quantum feedback control scheme, we exploit the separation theorem of filtering and cont...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Bio Systems

دوره 77 1-3  شماره 

صفحات  -

تاریخ انتشار 2004